оглавление

Предисловие	5
Глава 1. Математическое введение 1.1. Динамическая устойчивость решений гамильтоновых систем	14
типа уединенных волн 1.1.1. Трансляционная инвариантные гамильтоновы системы (14). 1.1.2. Существование решений и основные предположения (15). 1.1.3. Устойчивость (16).	14
 Спектральная неустойчивость и функция Эванса 1.2.1. Локальный анализ (20). 1.2.2. Внешние системы (27). 1.2.3. Функция Эванса (27). 1.2.4. Большие λ (28). 	19
Глава 2. Петлеобразные солитоны в эластике Эйлера	31
 2.1. Формулировка задачи, солитонные решения, симметрии 2.1.1. Солитонные решения (35). 2.1.2. Корректность задачи Коши (36). 2.1.3. Симметрии (36). 	34
 2.2. Спектральные свойства оператора <i>H</i>	37
2.3. Устойчивость	40
2.4. Вычисление первого ненулевого коэффициента ряда Тейлора функции <i>D</i> (λ)	42
2.5. Резюме	45
2.6. Приложение	47
Глава 3. Захваченные моды в сжимаемом стержне	50
 3.1. Продольные волны	51
3.2. Продольно-изгибные волны	57
3.3. Нелинейный резонанс продольной и изгибной мод	61
3.4. Обсуждение и выводы	61
3.5. Приложение	63
Глава 4. Неустойчивость «шейки» в растянутом стержне	65
 4.1. Формулировка задачи, солитонные решения	66
4.2. Условия орбитальной устойчивости	68

4.2.1. Спектр оператора <i>H</i> (68). 4.2.2. Ограничение на скорость уединенной волны (69).	
4.3 Неустойчивость	70
4.4. Резюме	74
Глава 5. Солитонные структуры в композиционном материале 51 Формулировка задачи	76 77
5.1.1. Основные уравнения (77). 5.1.2. Локальная теория су- ществования (78). 5.1.3. Сохраняющиеся величины и симмет- рии (79). 5.1.4. Солитонные решения (80).	
 5.2. Условия орбитальной устойчивости	81
5.3. Модельные уравнения: наводящие соображения	87
5.4. Неустойчивость	89
5.5. Взаимодействие уединенных волн	90
5.6. Обсуждение результатов	97
5.7. Приложение	98
Глава 6. Некоторые нерешенные задачи	104
6.1. Уединенные волны при изгибе бесконечного нерастяжимого	
стержня с кручением	104
6.1.1. Независимые и зависимые переменные задачи (106). 6.1.2. Углы Эйлера в динамике стержней (110). 6.1.3. Бегущие волны и солитоноподобные структуры (113).	
 6.2. Плоские уединенные волны изгиба с учетом малых дефор- маций 6.2.1. Динамические уравнения плоских движений стерж- 	117
ней (119). 6.2.2. Законы сохранения и вариационные принци- пы (122). 6.2.3. Общая теория бегущих волн (124). 6.2.4. Уеди- ненные волны (129).	
6.3. Уединенные волны в упругих трубах, заполненных жидко-	
стью	131
6.4. Обсуждение	141
Список литературы	153

Предисловие

Изучение волн деформации и изгиба в упругих стержнях привлекает в последнее время значительный интерес, прежде всего в силу того обстоятельства, что стержень является естественным линейным волноводом. Даже в линейном случае упругие волноводы обнаруживают ряд замечательных свойств. К этим свойствам относится, в первую очередь, существование так называемых захваченных мод — локализованных собственных решений рассматриваемых уравнений, имеющих конечную энергию. Соответствующие решения отвечают изолированным значениям частоты и являются сильно локализованными в пространстве, иными словами, представляют собой собственные функции спектральных задач, где в роли спектрального параметра выступает частота волны (см., например, [Postnova & Craster, 2007]).

Учет нелинейных эффектов теории упругости приводит к появлению локализованных волн, которые возникают, как продукт баланса нелинейности и дисперсии. Нелинейность в упругом стержне обусловлена конечными значениями напряжений, упругими свойствами материала, а также конечной величиной поперечных отклонений, в то время как дисперсия возникает в результате конечных поперечных размеров стержня, а также в результате вертикальных смещений упругой линии.

Надлежащим образом упрощенные уравнения нелинейной теории упругости, описывающие волны в одномерных волноводах, во многих случаях позволяют аналитически описать локализованные волновые структуры. К этим структурам относятся, прежде всего, продольные волны деформаций постоянной формы — уединенные волны.

Уединенные волны — локализованные по пространству решения нелинейных уравнений, описывающих волновые процессы в диспергирующих и диссипативных средах, привлекают значительный интерес в качестве объектов как математического, так и физического исследований. Присутствие решений типа уединенных волн — солитонов у сложных нелинейных уравнений стимулировало развитие разнообразных методов мощного математического формализма, в том числе знаменитого метода обратной задачи теории рассеяния (см., например, [Захаров и др., 1980; Dodd *et al.*, 1982]). Солитоны представляют собой пример уединенных волн, взаимодействие которых происходит без изменения формы.

Однако принятое в литературе понятие уединенной волны относится к более общему классу бегущих волн, основной характеристикой